ARTICLES
80 Jesus and Women: Readers Answer Dr. Billy Graham
92 How to Analyze Your Child’s Handwriting Dr. Henry O. Teltscher
100 Ralph Nader’s Most Shocking Expose Ralph Nader
104 Confessions of a Wicked Stepmother Georgia Lee Cox
106 My 8 Years As the Kennedys’ Private Nurse Rita Dallas, R.N., with Maxine Cheshire
110 Maybe Your Whole Family Needs a Psychiatrist Max Wylie
112 The Liberation of Mrs. Howard Hughes D. L. Lyons
115 No Space for Women? Isaac Asimov
130 The Amazing “New You” Diet Joan Gage

FICTION
108 Love Triangle Richard Posner
116 Women’s Lib, the Tooth Fairy and Other Myths Marnie Ellingson
118 Baby Sitter Celia Fremlin

BOOK BONUS
189 A Little Bit of Sunlight Françoise Sagan

FEATURES
6 Editor’s Diary
12 What’s Happening: Gene Shalit
14 Can This Marriage Be Saved? Dorothy Cameron Disney
28 Project: You—About False Eyelashes
48 Medicine Today: David R. Zimmerman
56 Bruno Bettelheim
58 Amy Vanderbilt
60 Poor Woman’s Almanac Beryl Pfizer
68 The Power of a Woman
70 Spending Your Money Sylvia Porter
74 Pet News
78 Dr. Rubin Theodore Isaac Rubin, M.D.
175 How to Make Money in Your Spare Time
202 Shopping Center
208 Journal Store

FOOD
136 Bounty from the Sea
138 Great Danes Margaret Happel
140 Kitchen Safari Harva Hachten
142 Work Wonders with Meat Sauces
144 Things Mothers Never Taught You About Steaming
148 Poppy Cannon’s Meat-a-Day Menus
154 Recipe Index

HOME MANAGEMENT
84 Designing a Kitchen That Works Margaret Davidson

DECORATING
30 Color It Springtime
126 One Man’s Alphabet Nathan Mandelbaum

PATTERNS
20 Lovely Leaf Pods and a “Pink”
76 Men’s Maker Recipe File
94 Needlework
132 Keep America Beautiful Nora O’Leary

BEAUTY AND FASHION
120 Look Who’s Coming to Town Sally Obre
124 Color It Wild Trudy Owett
128 Beauty While You Wait

RALPH NADER’S
MOST SHOCKING
EXPOSE

Too many hospitals are hazardous electrical horror chambers, says America’s leading safety crusader. At least 1,200 people a year are electrocuted and many more are killed or injured in needless electrical accidents in hospitals. Here’s a report on the danger—and what must be done about it by the hospitals themselves, by the makers of medical equipment, by the government and by concerned citizens. By Ralph Nader

Not long ago, a patient connected to an external heart pacemaker—an electronic device to help the heart function normally—was found dead, part of his body touching the metal frame of his electrically operated hospital bed.

In another hospital, a resident physician was discovered slumped lifeless beside a stainless steel table. He had been electrocuted when he touched an ungrounded oscilloscope (an instrument that monitors the heart pacemaker) and the table at the same time.

In yet another hospital, a patient suddenly became rigid during a routine diagnostic procedure, warning personnel to cut the electric power of an instrument that was sending potentially lethal currents into his heart. Fortunately, the patient survived.

In a fourth hospital, an electrical switch broke and a patient was crushed to death by a descending X-ray machine.

And in a speech last November 16, Roger O. Egeberg, M.D., Assistant Secretary for Health and Scientific Affairs of the U.S. Department of Health, Education and Welfare, described another hospital tragedy: “Not long ago,” Dr. Egeberg noted, “a woman in her mid-sixties entered a hospital in metropolitan Washington, D.C., for routine thyroid gland surgery. When the operation was completed and the patient was being sutured, the physician turned off the anesthesia machine. An explosion occurred, possibly caused by an electrical spark. Within four and a half hours the patient was dead as a result of the injuries she sustained in the blast.”

Paradoxically, medical instruments that have brought hope of longer life to thousands of people have also increased a thousandfold the risks to hospital patients. “Life-saving” electrical devices used in hospitals across the country electrocute an average of three patients a day, at the lowest estimate. Other patients die as a result of electrical burns, explosions or loss of instrument control. Since the advent of the heart pacemaker and cardiac catheterization—the insertion of a catheter, or tube, into the heart—the hospital environment has become so dangerous that today it is the site of more electrical accidents than any industry except mining.

Spectacular advances in medical technology have unquestionably opened new horizons for people suffering from heart and lung disorders and other diseases. Those who may benefit—for example, the 20,000 patients who receive implanted heart pacemakers each year—may understandably be willing to hazard risks in hope of staying alive. But the myths of the medical machine lead us to believe that most of these risks are unavoidable. The tragedy is that most are not.

Most electrical accidents in hospitals occur because safety measures that can reduce risks are grossly neglected or even unknown among hospital staffs; because complex and highly dangerous equipment is installed in hospitals that have primitive wiring systems, and the equipment is operated by untrained personnel; and because machines that reach inside a human being and touch his heart are less well tested than plumbing devices in our bathrooms.

These accidents often occur because manufacturers design dangerous devices without making them fail-safe against even the most common mistakes of operators. The real risk for a hospital patient may be considerably less than esoteric. It may be the risk that hospital staff will decide to use a frayed electrical cord one more time, or, for the heart patient with an external pacemaker, that he will be placed in an electrically operated bed—a highly dangerous but common occurrence. Or instead of employing a qualified biomedical engineer, a hospital administrator may ask the building electrician to install complex new equipment.

Most of these instances of negligence remain hidden by the fact that physicians and hospitals habitually report deaths by electrocution as “cardiac arrest.”

Electrical gadgetry and the accompanying hazards of electric shock are everywhere in our environment—in our homes, schools and offices. When a young guitarist is electrocuted by his instrument, or when a priest is killed by an electrically operated weight reducer—two incidents recently reported in the press—we want to know what went wrong. Was the guitar defective? Was the wiring bad? Did the victim use the machine improperly? Unfortunately, these questions are not often asked in hospitals, where at the very least 1,200 Americans are electrocuted annually during routine diagnostic and therapeutic procedures.

We do not even have a clear idea of the number of hospital fatalities caused by electric shock. Medical engineers such as Professor Hans von der Mese, co-chairman of the Subcommittee on Electrical Safety of the Association for the Advancement of Medical Instrumentation and safety consultant to New York City’s Health Services Administration, believe that the number might be 10 times as high as the conservative estimate of 1,200. Yet most of these deaths could have been prevented by adequate safety measures.

(continued on page 176)

Photograph by Gene Santos/Newsday
HUNGER IS ALL SHE HAS EVER KNOWN

Ralph Nader's Expose continued from page 98

For the patient whose heart is made accessible to electric current through electrodes and catheters, merely touching the frame of a hospital bed, especially an electrically operated bed, may prove fatal. This happened to a 52-year-old man who was connected to an external pacemaker by means of a catheter inserted into the heart itself. Someone had attached to the pacemaker an ungrounded extension cord that eliminated the instrument's grounding system. When a current leaked from the pacemaker, as it frequently does, it passed through the catheter electrode into the patient's heart, then through the part of his body in contact with the grounded electrically elevated bed.

The death could have been prevented in at least three ways: if hospital staff had not attached an ungrounded extension cord to the pacemaker (extension cords should never be used with such equipment); if the patient had not been placed in an electrically operated bed; if the pacemaker had carried a device that limited the current in the patient's circuit to a safe level.

This death was investigated because it was the third such fatality in less than two months at that hospital. It is possible, even likely, that the other deaths, which were not investigated, were also due to electrocution. But most such deaths are not reported. Almost invariably, when electrocutions happen during diagnostic procedures in which the patient is hooked up to electronic systems, the deaths are listed as cardiac arrest. Without engineering analysis, it is difficult to tell whether a patient died of his disease or of a shock caused by the equipment. To protect themselves against malpractice suits, physicians and hospitals avoid such investigations, and many hazards go undetected and uncorrected. There have been few lawsuits over these deaths and thus the hazards have been little publicized. Insurance companies that make studies of electrical hazards have not alerted the public to the dangers or to the incidence of death. Statistics have hidden the fact that a shock-hazard epidemic of critical proportions exists in our hospitals.

The hazards of electrical devices are not limited to delicate equipment such as the heart pacemaker. Routine electrical equipment may also cause death. Take the case of the patient who was squeezed to death when the switch controlling the X-ray machine's vertical movement failed while the machine was being lowered over him. He died before the technician could open the circuit breaker located some distance away.

What caused the switch to fail? A broken contact that shorted a circuit. The break had probably existed for some time. If the hospital had conducted regular equipment checks, the fault would probably have been discovered and corrected. In addition, precious time was lost because the main switch, which cuts all power to the instrument, was not easily accessible. Finally, the circuit breakers were not clearly marked, and the technician opened three different electrical circuits before he found the right one.

Nor are electrical accidents limited to patients. A young Canadian physician nearly died of electric shock when he pressed the discharge button on a defibrillator. This machine, used for correcting uncoordinated heartbeat, is inherently dangerous because it is designed to deliver a high-energy shock. Examination revealed that the ground wire in the three-prong plug had been broken, presumably when someone attempted to force the plug into a two-hole socket. Thus current was released—first in the chassis of the machine, then into the physician.

Inexcusable negligence

Some fatalities are caused by inexcusable negligence. Many devices are used with adapter plugs that don't ensure grounding. That is what happened with the hospital doctor who was found dead, the metallic switch of the oscilloscope in his right hand, his left hand touching a metal drawer of the stainless steel table on which the instrument was standing. A device in the power supply circuit of the oscilloscope had shorted, shooting 200 volts into the cabinet of the instrument. The oscilloscope should have been grounded through the grounding prong of the three-prong connector instead of a three-to-two-prong adapter (called a "cheater adapter") was in use. In this case, the adapter was completely unnecessary to connect the instrument, but the instrument was not designed to prevent the mistake. Because it was ungrounded and because the doctor was touching a grounded steel table, the current passed through his right arm, through his trunk, heart and left arm into the grounded table.

Physicians and hospital personnel have been aware for some time of the hazards of electrically ignited sparks and electrical electric shock.

CHRISTIAN CHILDREN'S FUND, Inc.
Box 511, Richmond, Va. 23224

I wish to sponsor □ boy □ girl in (Country).
□ Choose a child who needs me most. I will pay $12 a month. I enclose my first payment of $. □ Please send me more information.
Name.
Address.
City. Zip.
State.

Registered (VFA-008) with the U. S. Government's Advisory Committee on Voluntary Foreign Aid. Non-profit 501c(3) organization.

Write today: Veren J. Mills, Box 1407 Yonge, Toronto 7

"What a crowd! I almost lost Junior!"
Try our thirsty-hair test.

Pull out a hair and place it on the proper panel. Does hair look faded and dry? Is the end split? Now stretch it to the breaking point. Healthy hair will crinkle at the broken ends. Dry, brittle hair won’t.

Place dark hair here.

Undo the dry with conditioners that penetrate your hair.

Ogilvie’s penetrating conditioners are significant factors in the care of dry hair. They do far more than coat the hair. Penetrating conditioners enter damaged hair shafts to help strengthen them with protein and other vital conditioners. They restore body, give your hair a young look with the bounce, the brilliance, the strength to be beautiful again.

There are penetrating protein conditioners in our Lotion Conditioner and in our Conditioning Shampoo. Both are especially beneficial for dry, brittle, thirsty hair.

Any questions?
Whatever your hair type or condition, Ogilvie offers a complete collection of custom-formulated shampoos, conditioners, setting lotions, and hair sprays. Just take this ad to an Ogilvie hair care center. A specially trained consultant will be on hand to help you choose your own personalized program.

Here’s your personalized Ogilvie Program for thirsty hair:
1. Conditioning Shampoo with Protein.
2. Lotion Conditioner with Protein.
3. Conditioning Setting Lotion.

Ogilvie
Specialists in Hair Care.

Most need extensive modernization to provide a safe environment for new electrical devices that are in widespread use. Electrical overloadings is common. Many hospital outlets are incorrectly wired or provide no ground contact. In most cases these outlets were installed by hospital electricians when equipment appeared with three wires. As long as the plugs went in, the electrician believed his job was done.

Only three hospitals in the country have biomedical engineers on their staffs to supervise the operation and maintenance of complex machines—Downstate Medical Center in New York City; Sinai Hospital in Baltimore; and Charles S. Wilson Hospital in Johnson City, N.Y. Most hospitals simply turn over the apparatus to a staff physician who may have worked with electronic equipment. Hospitals do not yet have electrical device safety committees comparable to drug safety committees, although the two hazards are equally great. Few physicians who deal with these devices know as much about the concepts behind them or about their use as they know about pharmacology. Yet for years physicians operated these devices without recognizing either their potential hazards or the actual fatalities they caused. Countless deaths attributed to cardiac arrest are now believed to have been caused by internal electric (continued)
NADER'S EXPOSÉ continued

shock. Even now that there is greater understanding of the risks posed by the new hospital environment, precautionary measures are inadequate.

While inadequate hospital facilities and errors in using the machines are leading causes of accidents, mechanical defects also play a part in imperiling patients' lives. One medical engineer, Seymour Belevidi, tested several thousand instruments at Downstate Medical Center in New York City. He reported that 40 percent were defective. Every one of the 10 defibrillators he tested contained defects. One was capable of discharging high voltage into a patient before the physician signaled for it. Such a defect could kill both patient and physician. Another instrument had what the manufacturer thought was an insulator; it was actually a good conductor of electricity—a potentially fatal flaw that should have been discovered through testing. (The testing program at Downstate began in 1959, and Ilan-Zeev states that most manufacturers now agree to correct defects found.)

C. W. Walter, a clinical professor of surgery at Harvard Medical School, has reported that two prominent firms are now selling highly dangerous machines. Poor circuit design is a common criticism, and many devices have problems stemming from high levels of current. Problems often revealed only through the death of a patient. Some manufacturers offer to replace equipment; they cannot replace a dead person.

Toilets and pacemakers

Mrs. Virginia Knauer, President Nixon's Assistant for Consumer Affairs, has pointed out that toilet valves must pass several pre-clearance tests before they are installed in our bathrooms, but a pacemaker that is inserted into our hearts need not be tested at all. Heart pacemaker, artificial kidneys, hip pins and respirators—none are subject to standard inspection or regulation—and are drugs, for example.

Manufacturing of medical devices is a $300-million-a-year industry engaged in by more than 1,000 firms. Without regulations or standards, there has been little incentive for firms to standardize their products. Manufacturers' resistance to standardization has created an unnecessary hazard, since each hospital must iron out discrepancies in connectors and devise a system to prevent hazardous currents from being applied to helpless patients. Generally, the manufacturer considers his product a separate unit rather than part of a total treatment system, although a device is rarely used by itself.

In designing instruments, manufacturers almost totally ignore the ease with which mistakes can be made in the hospital environment, where personnel are often hurried, strained or tired, and untrained in the use of the equipment. Fatal errors are made that could be prevented by safer design.

Often the grounding devices furnished with electrical equipment are weak, easily broken and not designed for rough handling. They are not remotely foolproof, not fail-safe and not even reliable. Cords and plugs, the "appalling" number of defective instruments. Research at the Emergency Care Research Institute of Philadelphia revealed, for example, defective respirators that were "totally unable to support respiration." The Food and Drug Administration has recalled a number of these devices.

Dr. Joel J. Nobel, ECRI's director of research, says that "the number of life-threatening defects is truly appalling. Most are basic design deficiencies."

Now there's a can of beefy dog food you can squeeze.

It's Gaines Prime in cellulose cans. And cellulose cans mean you can squeeze our beefy chunks before opening. To prove they're moist and tender.

They also mean you can see what's in there. You can see the beef by-products and beef for good taste. With vitamins, minerals, even vegetables for good health.

There's just no better dog food for your dog—at any price. Same for Prime Variety. Complete chicken, liver and beef flavor dinners in one box.

Easy beefy Prime in the cellulose cans.

ECRI is a nonprofit organization supported by government agencies, hospitals and private contributions. No staff member receives consulting fees from the health devices industry. ECRI findings indicate that, in the absence of objective testing and evaluation, unsafe equipment is being used in hospitals that are unqualified to pretest it. Hospital associations in three regions—California, Texas and New England—are in the process of setting up medical product information exchange systems. Central testing programs to serve all hospitals in the region are much more feasible than tests conducted in individual hospitals, but such programs have yet to get underway.

At present, there are no government regulations requiring assurance or standards to ensure the safety and performance of certain medical devices, such as catheters, pacemakers, dialysis machines and bone guns. During the past several years, efforts to bring new devices under regulations have failed. Presidents Kennedy, Johnson and Nixon have supported regulations and minimum standards for medical devices. In September 1970 a study group appointed by Presi- dent Nixon and headed by Dr. Theodore Cooper, Director of the National Heart and Lung Institute of the National Institutes of Health, recommended legislation to regulate these devices.

A bill has been introduced by Congressman Thomas Foley (D., Wash.) to establish regulations and standards for devices not covered by present law. The bill was originally proposed in 1969, but no action has yet been taken. Legislation has been stymied in part because claims that standards for such instruments are difficult to set. But the failure of physicians to publicize the real extent of the hazards is the reason why the need for legislation has been unnoticed.

Pretesting of these devices by independent testing agencies and establishment of uniform government standards will help ensure that the instruments are safe, that they are fail-safe and that they assume much less knowledge and expertise on the part of the typical hospital employee who runs them. Beyond government standards, what is needed is greater vigilance by hospitals and physicians. In the absence of trained personnel, adequate electrical systems and rigid inspection and testing, even the best-designed machine may become a killer. Unfortunately, there is little indication on a broad scale, that hospitals and physicians are prepared to make a major commitment to electrical safety. Instead, there is every indication that accidents are occurring more frequently.

The public may well ask where the electric safety committees in hospitals are, or the services of biomedical engineers. Where are the requirements for testing and inspection of safety? Where is the leadership of medical organizations that should be demanding safety from manufacturers and helping in enforcement? Gov- ernments? I do not believe the public should have to accept the response that physicians are bound by the regulations of hospital safety: that after all, most electrical accidents occur in the home.

It is true that there is too little understanding of electrical hazards. The use of two-prong plugs (without a third grounding wire) is a simple hazard that...
continues to exist in many homes and other buildings. The naiveté of physicians who use intricate devices is undoubtedly shared by many other people who do not understand when or why electrical devices can be hazardous. The housewife who simultaneously touches a toaster and a refrigerator handle and receives a shock usually lives to return the toaster, or change the wiring, or complain to the manufacturer. The heart patient who receives the same kind of shock is not so fortunate.

If we have the technology to stimulate the heart, to sustain life and to probe the innermost regions of the body, we also have the means to make devices that are safe from human error. The unprecedented hope offered by new medical technology does not need to be accompanied by unprecedented risk. Such avoidable tragedies in our hospitals will not be stopped until manufacturers recognize the limitations of the personnel who use their devices, and until users demand that safety be built into the devices. Dangers that have been veiled as unavoidable risks, or risks inherent in the condition of the patient, must be exposed. Until they are, new medical devices will continue their Jekyll-and-Hyde role—they are life-giving devices for some, but death machines for others.

A KITCHEN THAT WORKS

continued from page 90

13. Wasteful disposal. For food waste, disposers in sinks were highly favored. Trash, according to conversations with many women, continues to be a problem. Some said a large wastebasket was the answer, but where to put it in the kitchen remains a problem. Pull-out containers or drawers with liners were attractive, but not always easily accessible. Trash compactors interested the women questioned, but were still relatively unknown.

14. Kitchen storage space. Storage space—or the lack of it—brought the most complaints of all from the women surveyed. Everyone wanted more storage space. Some 80% said the kitchen needs extra storage away from the main work area for utensils and for food and supplies bought in bulk. The majority (54%) wanted a walk-in pantry for extra storage. Some 35% said floor-to-ceiling cabinets with lots of shelves would do the trick. Another useful feature: special, easy-to-get-at space for the collection of today’s pluggins: frying pans, blenders, broilers, juicers, etc. Almost everyone wanted more countertops—some 47% thought it would be useful to vary some counter heights from the standard 36”.

15. Floors. Vinyl floors were favored by the majority, with carpeting running second. Ceramic, brick and wood floors all got minority approval. In talks with women we learned that they especially liked vinyl floors because they are easy to clean and versatile in style. Sometimes, women liked several different materials in the same kitchen—vinyl in the work area and carpeting in the eating area, for example.

16. Cabinets. Three out of four women selected wood cabinets. About a third preferred the new plastic-fronted cabinets. Few wanted metal cabinets and a majority liked the look of wood grain—real or synthetic. As for style, 50% preferred a plain façade. About one-third liked the more decorative cabinets. Interestingly, despite an apparent preference for plain cabinets, they are the least available in good quality construction. In general, women said cabinet design, including storage arrangements, still has room for improvement. Many bemoaned the fact that special space-saving features—sliding shelves and bins, for example—were often so costly that they could not be included in the kitchen plan.

17. Wall finishes. Most women liked painted walls. Paper and coated fabric were second choices. There was considerable variation in preferences according to the part of the country and the style of the home.

18. Counters. Nine out of ten women preferred plastic counter tops. Other popular alternatives: wood and tile. A number saw the advantage of having more than one kind of a surface in the kitchen, wood sections perhaps for slicing and heat-proof sections near the range cooking top.

19. Other features. Although not part of the survey, two other important features of kitchen design were repeatedly stressed in our talks with women: Good natural light by day and well-designed artificial lighting by night. Also important: an effective ventilation system that whisks away cooking odors and heat.